4 research outputs found

    Detection and Generalization of Spatio-temporal Trajectories for Motion Imagery

    Get PDF
    In today\u27s world of vast information availability users often confront large unorganized amounts of data with limited tools for managing them. Motion imagery datasets have become increasingly popular means for exposing and disseminating information. Commonly, moving objects are of primary interest in modeling such datasets. Users may require different levels of detail mainly for visualization and further processing purposes according to the application at hand. In this thesis we exploit the geometric attributes of objects for dataset summarization by using a series of image processing and neural network tools. In order to form data summaries we select representative time instances through the segmentation of an object\u27s spatio-temporal trajectory lines. High movement variation instances are selected through a new hybrid self-organizing map (SOM) technique to describe a single spatio-temporal trajectory. Multiple objects move in diverse yet classifiable patterns. In order to group corresponding trajectories we utilize an abstraction mechanism that investigates a vague moving relevance between the data in space and time. Thus, we introduce the spatio-temporal neighborhood unit as a variable generalization surface. By altering the unit\u27s dimensions, scaled generalization is accomplished. Common complications in tracking applications that include occlusion, noise, information gaps and unconnected segments of data sequences are addressed through the hybrid-SOM analysis. Nevertheless, entangled data sequences where no information on which data entry belongs to each corresponding trajectory are frequently evident. A multidimensional classification technique that combines geometric and backpropagation neural network implementation is used to distinguish between trajectory data. Further more, modeling and summarization of two-dimensional phenomena evolving in time brings forward the novel concept of spatio-temporal helixes as compact event representations. The phenomena models are comprised of SOM movement nodes (spines) and cardinality shape-change descriptors (prongs). While we focus on the analysis of MI datasets, the framework can be generalized to function with other types of spatio-temporal datasets. Multiple scale generalization is allowed in a dynamic significance-based scale rather than a constant one. The constructed summaries are not just a visualization product but they support further processing for metadata creation, indexing, and querying. Experimentation, comparisons and error estimations for each technique support the analyses discussed

    Complications after tibia plateau fracture surgery

    No full text
    High-energy tibial. plateau fractures are often the result of blunt trauma and are associated with severe soft-tissue injury. Fixation techniques demand considerable surgical skill and mature judgment. The available surgical options do not always guarantee a favourable outcome. Operative treatment includes internal and external fixation, hybrid fixation and arthroscopically assisted techniques. Operative management of high-energy fractures remains difficult and challenging and may be associated with serious complications, such as knee stiffness, ankylosis, deep infection, post-traumatic arthritis, malunion and nonunion. Prevention of the complications can optimise the clinical outcome in these patients. (C) 2005 Elsevier Ltd. All rights reserved
    corecore